New estimates of double trigonometric sums with exponential functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New estimates of double trigonometric sums with exponential functions

We establish a new bound for the exponential sum x∈X y∈Y γ(y) exp(2πiaλ xy /p) , where λ is an element of the residue ring modulo a large prime number p, X and Y are arbitrary subsets of the residue ring modulo p − 1 and γ(n) are any complex numbers with |γ(n)| ≤ 1. In particular, we improve several previously known bounds.

متن کامل

Bilinear Sums with Exponential Functions

Let g = 0,±1 be a fixed integer. Given two sequences of complex numbers (φm) ∞ m=1 and (ψn) ∞ n=1 and two sufficiently large integers M and N , we estimate the exponential sums ∑ p≤M gcd(ag,p)=1 ∑ 1≤n≤N φpψnep (ag ) , a ∈ Z, where the outer summation is taken over all primes p ≤ M with gcd(ag, p) = 1.

متن کامل

Estimates for “Singular” Exponential Sums

In [D1, Thm. 8.4], Deligne proved the following beautiful estimate for exponential sums in n ≥ 1 variables. Given a polynomial f(x1, . . . , xn) in n variables over k of some degree d ≥ 1, write it as f = Fd + Fd−1 + · · · F0 with Fi homogeneous of degree i. Suppose that the following two conditions are satisfied. (1) The degree d is prime to p := char(k). (2) The locus Fd = 0 is a nonsingular ...

متن کامل

Trigonometric Identities and Sums of Separable Functions

Modern computers have made commonplace many calculations that were impossible to imagine a few years ago. Still, when you face a problem with a high physical dimension, you immediately encounter the Curse of Dimensionality [1, p.94]. This curse is that the amount of computing power that you need grows exponentially with the dimension. The simplest manifestation of this curse appears when you tr...

متن کامل

Estimates for complete multiple exponential sums

where the sum is taken over a complete set of residues for x modulo q and eq(t) = e2πit/q. The study of these sums is readily motivated by applications in analytic number theory and elsewhere. The first important estimates for sums in one variable appear in the work of Weyl (1916) on uniform distribution. This led to van der Corput’s method with applications to the zeta function, the divisor pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archiv der Mathematik

سال: 2006

ISSN: 0003-889X,1420-8938

DOI: 10.1007/s00013-006-1628-7